June 26, 2014

Revised Working Paper: A Ricardian Analysis of the Impact of Climate Change on European Agriculture

We recently revised our paper on climate change impacts on European Agriculture.

The new FEEM working paper is available here.


This new version is also circulated as CESIfo working paper here.


Abstract:

This research estimates the impact of climate on European agriculture using a continental scale Ricardian analysis. Climate, soil, geography and regional socio-economic variables are matched with farm level data from 37,612 farms across Western Europe. We demonstrate that a median quantile regression outperforms OLS given farm level data. The results suggest that European farms are slightly more sensitive to warming than American farms with losses from -8% to -44% by 2100 depending on the climate scenario. Farms in Southern Europe are predicted to be particularly sensitive, suffering losses of -9% to -13% per degree Celsius.

New Draft: Do Temperature Thresholds Threaten American Farmland?

New draft of the paper on agricultural thresholds presented at the 2014 ASSA meetings.


I will present this new draft at the World Congress of Environmental and Resource Economists in Istanbul on Monday June 30 at 14:00.


Robert Mendelsohn and I do not find evidence of "thresholds" after which land values collapse in the East of the United States. We find instead evidence of adaptation to different climatic conditions.



Abstract:

It is widely known that temperatures have a hill-shaped effect on agriculture.  Some researchers argue that there is also a threshold effect, a temperature above which land values crash and crops fail. This paper uses flexible functional forms to estimate the effect of growing season temperature on American farmland values and crop yields. The paper finds evidence of the hill-shaped response function for both farmland value and crop yields. But there is no evidence of temperature thresholds whether temperature is measured at 3 hour intervals, daily, or for multiple days.

June 20, 2014

Book: Climate Change Mitigation, Technological Innovation and Adaptation


Finally, the long-due book that summarizes work done with the integrated assessment model WITCH
Abstract and contributors below, more information and order form here.




Abstract

This book presents a rigorous yet accessible treatment of the main topics in climate change policy using a large body of research generated using WITCH (World Induced Technical Change Hybrid), an innovative and path-breaking integrated assessment model.

The authors give a particular emphasis to the analysis of technological change necessary to build low-carbon economies. The WITCH model can track all of the actions which impact the level of mitigation – such as R&D expenditures, investments in carbon-free technologies and adaptation, purchases of emission permits, or expenditures for carbon taxes – thus allowing for the evaluation of equilibrium responses stimulated by different climate policy tools. The chapters examine various questions to explore the future of climate change policy. Why is it so hard to achieve a global agreement that paves the way to widespread reductions of carbon dioxide and other greenhouse gas emissions? What are the technologies that would deliver clean energy without harming economic growth? And finally, how does uncertainty about future policies and future technologies affect choices in the present?

This innovative book will appeal to researchers, policy makers and academics interested in climate change policy.

Contributors: Valentina Bosetti, Carlo Carraro, Enrica De Cian, Thomas Longden, Emanuele Massetti, Lea Nicita, Fabio Sferra, Alessandra Sgobbi and Massimo Tavoni

June 18, 2014

Keynote at final meeting of Global-IQ Project

The keynote presentation that I gave at the final meeting of the EU FP7 project Global-IQ is available here.

The objective of the GLOBAL IQ project was three-fold:
  • to provide significant advances in the estimation of socio-economic impacts of global challenges – at Global, European and regional scale;
  • to identify optimal adaptation strategies;
  • to evaluate total costs and the optimal mix of adaptation and mitigation against global changes.

Led by Toulouse School of Economics, the Global IQ project involved eleven partners located in eight EU members states:

  • Toulouse School of Economics (TSE) France
  • Fondazione Eni Enrico Mattei (FEEM) Italy
  • Internationales Institut für Angewandte Systemanalyse (IIASA) Austria
  • Potsdam-Institut für Klimafolgenforschung (PIK) Germany
  • University of Gothenburg (UGOT) Sweden
  • Charles University in Prague (CUNI) Czech Republic
  • Istituto di Studi per l’Integrazione dei Sistemi (ISIS) Italy
  • London School of Economic (LSE) UK
  • Graduate Institute of International Studies in Geneva (HEID) Switzerland
  • Centre for Economic Policy Research (CEPR) UK